Área de una heptágono

Podemos calcular el área de un heptágono a partir de la longitud de su lado o de su apotema, que se define como la distancia mínima entre el centro del polígono y uno de sus lados.

El área de un heptágono puede obtenerse multiplicando por siete el área del triángulo representado en la siguiente figura:

Área de un heptágono a partir de uno de sus triángulos

Sabemos que el área de cualquier triángulo se obtiene multiplicando su base por su altura y dividiendo por dos. Así, dado un lado de longitud L y un apotema de longitud a, el área del triángulo representado en la figura anterior es igual a:

$$A_{\triangle} = \frac{L\cdot a}{2}$$

Y el área total del heptágono se obtiene multiplicando este valor por siete:

$$A=7\cdot A_{\triangle} = \frac{7\cdot L\cdot a}{2}$$

Esta fórmula puede simplificarse teniendo en cuenta que el lado y el apotema están relacionados mediante la expresión:

$$L=2\cdot a\cdot \tan{\frac{\pi}{7}}$$

Combinando las dos últimas expresiones se obtiene la fórmula del área de un heptágono a partir de su apotema a:

$$A = 7\cdot a^2\cdot\tan{\frac{\pi}{7}}$$

De forma similar también puede calcularse el área de un heptágono a partir de la longitud de su lado L como:

$$A = \frac{7\cdot L^2}{4\cdot\tan{\frac{\pi}{7}}}$$

Puedes utilizar la siguiente calculadora para calcular el área de un heptágono si conoces la longitud de su lado o su apotema. La calculadora también te permite calcular el valor de estas dos variables si conoces el área total del heptágono.

Puedes introducir los valores de longitud expresados en metros m, kilómetros km, decímetros dm, centímetros cm y milímetros mm. El área puede expresarse en estas mismas unidades elevadas al cuadrado.

Introduce uno de los siguientes tres valores para resolver los parámetros del heptágono:

Área de un heptágono